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Abstract. We propose a simple variational form of the wave function to describe the ground state and
vortex states of a weakly interacting Bose gas in an anisotropic trap. The proposed wave function is valid
for a wide range of the particle numbers in the trap. It also works well in the case of attractive interaction
between the atoms. Further, it provides an easy and fast method to calculate the physical quantities of
interest. The results compare very well with those obtained by purely numerical techniques. Using our
wave function we have been able to verify, for the first time, the predicted behaviour of the aspect ratio.

PACS. 03.75.Fi Phase coherent atomic ensembles, quantum condensation phenomena –
03.65.Db Functional analytical methods – 05.30.Jp Boson systems

1 Introduction

Observation of Bose-Einstein condensation in cooled and
trapped dilute gases of alkali atoms [1–3] and spin polar-
ized atomic hydrogen [4] has generated a renewed theo-
retical interest in understanding such systems. In a mean-
field approach, which is valid in the limit ρa3 � 1, where
ρ is the density of atoms and a is the s-wave scattering
length, ground state and vortex states of these systems
can be described by Gross-Pitaevskii (GP) equation [5].
Various numerical procedures [6–10] and approximate an-
alytical methods [11–15] have been used to solve the GP
equation. Among these variational schemes, one proposed
by Baym and Pethick [11] to explain the experimental
observations of reference [1] is particularly appealing. In
this approach the trial wave function was taken to be of
the form of the ground state of the trap potential (mod-
eled by an anisotropic harmonic oscillator potential). Thus
the wave function is represented by a three-dimensional
Gaussian with axial and transverse frequencies as varia-
tional parameters. This form of wave function, however, is
valid only when the number of atoms in the trap is very
small. As the number increases, the repulsive interaction
between the atoms tends to expand the condensate and
flatten the density profile in the central region of the trap
where the density is maximum. Of these two effects, only
expansion of the condensate can be described adequately
by the Gaussian trial wave function. On the other hand,
the Thomas-Fermi approximation [9,11] provides a wave
function which is valid when the number of atoms is very
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large which is the case with the recent experiments [16].
It is of interest, however, to have a form of wave func-
tion which apart from showing these limiting behaviours,
is also valid in the intermediate region. In a variational
approach, Fetter [14] has proposed such a wave function
for the bosons in an isotropic trap.

In this paper we propose a simple form of wave
function for the ground state of bosons confined in an
anisotropic trap. The wave function is valid for a very wide
range of particle numbers. When the number is small it
tends to mimic a Gaussian, and in the opposite limit it
resembles the Thomas-Fermi wave function. However, for
a large number of atoms the wave function differs from
the Thomas-Fermi wave function in the surface region, a
desirable feature as noted in references [9,17]. The trial
wave function has an additional parameter compared to
the ones used in reference [11]. This parameter takes care
of the flattening of the density in the central region of
the condensate. Thus, it provides a better lower bound
for the ground state energy than the Gaussian trial wave
function. We also compare the results obtained by our trial
wave function with those obtained using other numerical
procedures such as the minimization of energy functional
by the steepest descent method [9], and the integration of
the nonlinear Schrödinger equation [8,10]. These compar-
isons show the form chosen by us to be highly accurate for
obtaining a host of physical quantities of interest. In ad-
dition to providing accurate results for a very wide range
of the particle numbers, the method is also very fast from
the computational point of view. Further, using this wave
function, the physical observables can be expressed ana-
lytically in terms of three variational parameters which
are obtained by minimizing the GP energy functional.
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Since we have a simple analytical form for the energy
in terms of three variational parameters the procedure
of minimization is very simple. The novel achievement of
this method lies in verification of the predicted behaviour
of the aspect ratio which is a very important quantity
from the experimental point of view. It could not be as-
certained before because convergence of the aspect ratio to
the highly repulsive limit is very slow [9]. Since our method
can handle even a very large number of atoms in the trap
without any difficulty we could verify the behaviour of the
aspect ratio.

Based on physical reasoning we generalise the varia-
tional form to also describe the vortex states. As is the
case with the ground state, we find good agreement with
the existing results, with considerably less computational
effort.

Condensation has also been observed in 7Li [2] where
interatomic interaction is attractive which is characterized
by the negative s-wave scattering length. As the number
of atoms in the trap increases the condensate shrinks and
nonuniformity in the central region increases. After a crit-
ical number of atoms in the trap, the condensate collapses.
This situation is also very well-described by our trial wave
function. The parameter which accounts for flattening of
the density profile in the case of repulsive interactions also
takes care of the increase in density gradient in an effec-
tive way. The critical number of atoms for the case of 7Li
is in close agreement with that reported in reference [10].

The paper is organized as follows. Section 2 contains
the description of the variational scheme employed in the
paper. It also contains the analytic expressions for the ob-
servables of interest. Results obtained from the variational
procedure and their comparison with the existing ones are
presented in Section 3. Section 4 contains summary and
concluding remarks.

2 Variational method

2.1 Ground state

Bose Einstein condensation in experiments with cooled
and trapped atoms can be described within the frame-
work of the GP theory. Validity of such a description has
been analysed by Stenholm [18]. In a situation where the
trap can be modeled by an anisotropic harmonic oscillator
potential characterized by the two angular frequencies ω0

⊥
and ω0

z , and the interatomic interactions can be replaced
by an effective pseudo-potential involving s-wave scatter-
ing length a, the ground state energy for condensed bosons
of mass m is given by the Gross-Pitaevskii functional [5]

E1[ψ]
N

=
∫

dr1
1
2
[
|∇1ψ1(r1)|2

+
(
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1+y2
1+λ2

0z
2
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)
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]
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Here we have used the length scale a⊥ =
√
~/mω0

⊥ and
the energy scale ~ω0

⊥ provided by the trap potential to ex-
press equation (1) in terms of the dimensionless variables.

ψ1(r1) is the condensate wave function which satisfies the
normalization condition∫

dr1|ψ1(r1)|2 = 1. (2)

λ0 = ω0
z/ω

0
⊥ is the anisotropy parameter of the trap,

N is the total number of atoms in the condensate and
u1 = 8πaN/a⊥. The exact form of the wave function
can be determined by minimizing the energy functional
in equation (1) with the normalization constraint of equa-
tion (2). Such a minimization results in the nonlinear
Schrödinger equation[
−∇2

1 +
(
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1 + y2
1 + λ2

0z
2
1

)
+ u1|ψ1(r1)|2

]
ψ1(r1) =

2µ1ψ1(r1), (3)

where, µ1 is the chemical potential. It is not possible
to find an exact analytic solution to equation (3). Con-
sequently various numerical techniques have been de-
veloped to study the ground state properties of such
systems within the framework of the GP theory. These
techniques involve either the direct numerical minimiza-
tion of equation (1) with the constraint of equation (2)
[9] or numerical integration of equation (3) or its time
dependent version [6–8,10]. Another approach is to use
the variational method which has been extensively used
in different branches of physics. The main advantage of
this method is that with a suitable guess for the form of
the wave function it is possible to save a lot of compu-
tational effort and time. In addition, it may also provide
physical insights which generally get obscured in the com-
plicated computational procedures. The first study of this
kind was done by Baym and Pethick [11] in light of the
experimental observations in 87Rb [1]. They took the trial
wave function for the ground state as

ψ(r)=N1/2ω
1/2
⊥ ω1/4

z

(m
π~

)3/4

e−m(ω⊥r
2
⊥+ωzz

2)/2~ (4)

with effective frequencies, ω⊥ and ωz, treated as
variational parameters. However, the wave function above
brings out only the qualitative features of the condensate
e.g. expansion of the condensate in different directions,
shifts in the angular frequencies and the scaling behaviour
of energy with the number of atoms in the trap. Fur-
ther, this form of the wave function is valid only for a
small number of atoms in the trap (see Fig. 2 below). We
now propose a variational form of the wave function and
demonstrate its applicability and utility in providing an
accurate description of the condensate for a wide range of
the particle numbers. The form of the trial wave function
we choose is

ψ1(r1) =√
p

2πΓ (3/2p)
λ1/4

(
ω⊥
ω0
⊥

)3/4

e−
1
2 (ω⊥/ω0

⊥)p(r2
1⊥+λz2

1)p , (5)

where, λ, ω⊥ and p are the variational parameters which
are obtained by minimizing the energy E1 in equation (1)
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with respect to these parameters. It is easily verified that
the wave function satisfies the normalization condition of
equation (2). The expression of the ground state energy
E1 in terms of λ, ω⊥ and p is

E1 =
1
12
ω⊥
ω0
⊥

(
1 +

λ

2

)
Γ (1/2p)
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(1 + 2p)

+
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3
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(
1
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)3/2p

· (6)

For a particular value of N the parameters ω⊥, λ and p
are obtained by minimizing the energy above using stan-
dard numerical routines. We have used Mathematica [19]
for this and it takes a few seconds of the real time on a
166 MHz Pentium-1 computer to get the answer. Next we
discuss how different physical observables can be obtained
in terms of the parameters of the wave function. The as-
pect ratio which characterizes the anisotropy of the veloc-
ity distribution of the condensate is defined as

√
〈p2
z〉/〈p2

x〉.
This can be easily shown to be√

〈p2
z〉
〈p2
x〉

=

√
〈x2

1〉
〈z2

1〉
=
√
λ. (7)

The width of the condensate in the transverse direction is
given by

〈x2
1〉 =

ω0
⊥Γ (5/2p)

3ω⊥Γ (3/2p)
, (8)

and the width of the the momentum distribution in this
direction is given by

〈p2
x〉 =

N~mω⊥Γ (1/2p) (1 + 2p)
12Γ (3/2p)

· (9)

The peak density of the condensate is Nψ2
1(0)/a3

⊥. The
life time of the condensate is related to the density distri-
bution. The loss rate due to the two body loss rate [20]
and the three body loss rate [21] is given by

R(N) = α

∫
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⊥Γ

2(3/2p)
,

(10)

where, α is the two-body dipolar relaxation loss rate co-
efficient and L is the three-body recombination loss rate
coefficient.

2.2 Vortex states

We consider here the states having a vortex line along the
z axis. The wave function of such a state can be written as

Ψ(r) = ψ(r)eiκφ (11)

where κ is an integer denoting the quantum of circulation.
Substituting the complex wave function Ψ in place of ψ
in equation (1) we get the Gross-Pitaevskii functional for
the vortex states in terms of the scaled variables
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The corresponding nonlinear Schrödinger equation is[
−∇2
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2
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]
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We assume the trial wave function of the form

ψ1(r1) = Arq1⊥e−
1
2(ω⊥/ω0

⊥)p(r2
1⊥+λz2

1)p (14)

where q is an additional variational parameter. This par-
ticular form of the wave function is motivated by the fol-
lowing considerations.

1. Presence of the centrifugal term κ2/r2
1⊥ forces the wave

function to vanish on the z axis.
2. It has been shown that for a weakly interacting Bose

gas [22] the wave function corresponding to kth quan-
tum circulation behaves as

ψ ∼ rk1⊥ (15)

near the z axis.

The proportionality factor in equation (14) is deter-
mined by the normalization condition (Eq. (2))

A2 =

√
λpΓ (3/2 + q)

π3/2Γ (1 + q)Γ ((3 + 2q)/2p)

(
ω⊥
ω0
⊥

)((3+2q)/2)

·

(16)

For a vortex line described by the wave function in equa-
tion (14) the density peaks at

r1⊥ =

√
ω0
⊥
ω⊥

(
q

p

)1/2p

, (17)

and the peak density is given by

ρmax =
N

a3
⊥
A2

(
ω0
⊥
ω⊥

)q (
q

p

)q/p
e−q/p. (18)

It is also straightforward to get the analytic expression for
E1 in terms of the variational parameters ω, λ, p and q
which, in turn, are obtained by minimization of E1. The
kinetic energy is given by

(E1/N)kin =

ω⊥(1 + 2q) [(1+2p)(1+λ/2)+q(2p + 2q + λ)]Γ ((1 + 2q)/2p)

4(3+2q)ω0
⊥Γ ((3+2q)/2p)

·

(19)
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Table 1. Results for the ground state of 87Rb atoms confined in an anisotropic harmonic trap with λ0 =
√

8 and ω0
⊥/2π =

220/λ0 Hz. Chemical potential and energy are in units of ~ω0
⊥ and length is in units a⊥. Numbers in the brackets correspond

to the results of reference [9].

N µ1 (E1/N) (E1/N)kin (E1/N)HO (E1/N)pot

p
〈x2

1〉
p
〈z2

1〉
1 2.42 2.417 1.205 1.209 0.003 0.708 0.421

(2.414) (2.414) (1.207) (1.207) (0.000) (0.707) (0.42)

100 2.88 2.663 1.06 1.39 0.217 0.788 0.437

(2.88) (2.66) (1.06) (1.39) (0.21) (0.79) (0.44)

200 3.219 2.859 0.98 1.52 0.36 0.845 0.45

(3.21) (2.86) (0.98) (1.52) (0.36) (0.85) (0.45)

500 3.95 3.309 0.854 1.815 0.641 0.959 0.473

(3.94) (3.30) (0.86) (1.81) (0.63) (0.96) (0.47)

1000 4.787 3.851 0.755 2.16 0.936 1.078 0.499

(4.77) (3.84) (0.76) (2.15) (0.93) (1.08) (0.5)

2000 5.951 4.628 0.66 2.645 1.323 1.227 0.534

(5.93) (4.61) (0.66) (2.64) (1.32) (1.23) (0.53)

5000 8.164 6.142 0.543 3.577 2.022 1.469 0.596

(8.14) (6.12) (0.54) (3.57) (2.02) (1.47) (0.59)

10 000 10.527 7.783 0.461 4.577 2.744 1.689 0.657

(10.5) (7.76) (0.45) (4.57) (2.74) (1.69) (0.65)

15 000 12.264 8.999 0.416 5.317 3.266 1.833 0.699

(12.2) (8.98) (0.41) (5.31) (3.26) (1.84) (0.7)

20 000 13.689 9.998 0.385 5.922 3.691 1.944 0.732

(13.7) (9.98) (0.38) (5.91) (3.68) (1.94) (0.73)

The energy corresponding to the rotational motion is given
by

(E1/N)rot =
κ2ω⊥(1 + 2q)Γ ((1 + 2q)/2p)

4ω0
⊥qΓ ((3 + 2q)/2p)

· (20)

The oscillator energy is given by

(E1/N)HO =
ω0
⊥λ
(
1 + q + λ2

0/2λ
)
Γ ((5 + 2q)/2p)

ω⊥ (3 + 2q)Γ ((3 + 2q)/2p)
·

(21)

The interaction energy is given by

(E1/N)pot = 2

�
ω⊥
ω0
⊥

�3/2

× a
√
λNp(1+2q)2Γ (2q)Γ 2(1/2 + q)Γ ((3+4q)/2p)

2(3+4q)/2pπ1/2a⊥q(1 + 4q)Γ 2(q)Γ (1/2+2q)Γ 2((3+2q)/2p)
·

(22)

It is easy to verify that the ground state is obtained by
setting κ and q equal to zero. Once we have the energy of
the states with and without vortices we can calculate the
critical angular velocity for the formation of the vortex
state. In the unit of ω0

⊥ it is given by [9]

Ωc = κ−1 [(E1/N)κ − (E1/N)0] . (23)

To demonstrate the applicability of this method we have
performed calculations for 87Rb and 7Li. The s-wave scat-
tering length is positive for 87Rb. It is negative for 7Li.

Consequently the interatomic interaction is repulsive in
the former and attractive in the latter. We now present
the results and their comparison with the existing calcu-
lations.

3 Results

3.1 Positive scattering length: 87Rb

In this section we report calculations on 87Rb. We per-
form our calculations by employing the experimental num-
bers for the asymmetry parameter of the trap, the axial
frequency and the s-wave scattering length correspond-
ing to the experimental situation of reference [1] and the
subsequent theoretical calculations [8,9,11]. Accordingly,
λ0 = ω0

z/ω
0
⊥ =

√
8; ω0

z/2π is 220 Hz; a is 100a0, where
a0 is the Bohr radius. The corresponding characteristic
length is a⊥ = 1.222 × 10−4 cm and the ratio a/a⊥ is
4.33× 10−4.

First, we obtain the energy E1 (Eq. (6)) by minimizing
it with respect to the variational parameters ω⊥, λ and p
for various values of the particle number N . We present
the results in Figure 1. It is evident that the results ob-
tained by us are in close agreement with the results in ref-
erence [9] (see also Tab. 1). As pointed out above, these
agree well with the results obtained by using the Gaussian
trial wave function when N is small and with those ob-
tained by using the Thomas-Fermi approximation [9,11]
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Fig. 1. Ground state energy per atom for 87Rb as a func-
tion of N . Energy is in the units of ~ω0

⊥. The solid line is
the result of our variational calculation. The dashed line is the
result obtained by using the Gaussian trial wave function of
reference [11], while the dotted line is the result obtained by
using the Thomas-Fermi approximation. The filled circles are
the results of reference [9].

when N is very large. These comparisons clearly establish
the validity of our wave function for a very wide range of
the particle numbers.

Next, we compare the proposed wave function with
the Gaussian trial wave function of equation (4) and also
the one given by the Thomas-Fermi approximation in Fig-
ure 2. It is clear that when the number of atoms in the
trap is small the proposed wavefunction has more resem-
blance with the Gaussian wavefunction (Fig. 2a). As N
is increased the wave function tends to flatten in the cen-
tral region, and the resulting form is a mixture of the two
limiting forms i.e. the Gaussian and the Thomas-Fermi
wave function. In the central region it is close to the lat-
ter while it resembles the former away from the trap centre
(Fig. 2b). When N is very large the resemblance is more
with the Thomas-Fermi wave function (Fig. 2c). However
we note that the wave function vanishes smoothly far away
from the centre of the trap. As mentioned above this a de-
sirable feature which is crucial for the calculation of some
relevant physical observables e.g. the aspect ratio [9]. It
is clear that our wave function not only provides a better
lower bound for the energy but also shows the correct and
the desirable limiting behaviour.

Results of calculations of various quantities e.g. chemi-
cal potential, total energy, kinetic energy, potential energy,
interaction energy, average size of the condensate in the
transverse direction and in the axial direction have been
presented in Table 1. The close agreement with the results
of reference [9] is evident. We have also looked at the vari-
ation of the peak density and the total loss rate of the
atoms with the particle number N . We find them to be in
good agreement with the result of reference [8].

We now present the behaviour of the aspect ratio which
is a very important quantity from the experimental point
of view. As mentioned in references [9,11] it is equal to√
λ0 in the non-interacting limit and tends to λ0 in the

Fig. 2. Ground state wave function for 87Rb along the x axis
for different values of N . The solid line is the result of our varia-
tional calculation. The dotted line is the result obtained by us-
ing the Gaussian trial wave function of reference [11], while the
dashed line is the result obtained by using the Thomas-Fermi
approximation; (a) N = 100. (b) N = 1000. (c) N = 50 000.

highly repulsive limit, which is the case when N is very
large. However, the convergence to the repulsive limit is
very slow [9,11] and therefore this behaviour has not been
seen explicitly so far. On the other hand, with a variational
wave function, calculations can be performed for any N
with equal ease. Consequently we have been able to verify
the predicted behaviour of the aspect ratio. It is seen from
Figure 3 that it requires calculations up to N ∼ 106 to see
the aforesaid behaviour.



396 The European Physical Journal D

Fig. 3. Aspect ratio in 87Rb as a function of N . The lower and
upper horizontal lines correspond to

√
λ0 and λ0 respectively.

Fig. 4. Vortex-state wave function of 5000 87Rb atoms along
the x axis for κ = 1.

In Figure 4 we show the wave function of the vortex
state corresponding to κ = 1 for N = 5000. The atoms are
pushed away from the z axis. Peak density is 7.155× 1013

which occurs at r1⊥ = 1.611. The position of the peak
moves further away from the z axis as N is increased. For
N = 10 000 the peak occurs at r1⊥ = 1.844 while it is at
r1⊥ = 2.161 for N = 20 000. The value of the peak den-
sity remains much the same for N = 10 000 and 20 000
(9.524 × 1013 and 12.26 × 1013, respectively). We have
also compared the energy of the vortex state with differ-
ent values of κ with that obtained in the Thomas-Fermi
approximation [23]. For calculation in the Thomas-Fermi
approximation we have neglected the change in the chem-
ical potential due to the presence of a vortex line. Results
are presented in Table 2. The Thomas-Fermi approxima-
tion yields lower values of the energy, which is expected
as it ignores the kinetic energy contribution from the core
and the surface regions of the vortex state. This approx-
imation is valid only for very large N . We do find the
results of the two calculations to be in close agreement for
large N . For N = 106 the two results differ only by ≈ 1%.
We have also calculated the critical angular velocity for
the vortex state with κ = 1 for various values of the par-
ticle number N . We find that it decreases rapidly in the

Table 2. Results for the energy of vortex states with κ =
1, 2 and 3 of 87Rb atoms confined in an anisotropic harmonic
trap with λ0 =

√
8 and ω0

⊥/2π = 220/λ0 Hz. Energy is in
units of ~ω0

⊥. Numbers in the brackets correspond to the results
obtained in the Thomas-Fermi limit.

N (E1/N)κ=1 (E1/N)κ=2 (E1/N)κ=3

103 4.455 5.274 6.164

(3.385) (4.057) (4.402)

5× 103 6.579 7.237 7.993

(5.845) (6.513) (7.219)

104 8.176 8.773 9.469

(7.537) (8.146) (8.853)

5× 104 14.455 14.94 15.511

(13.951) (14.397) (14.977)

105 18.78 19.227 19.771

(18.306) (18.684) (19.192)

5× 105 35.097 35.474 36.072

(34.627) (34.876) (35.227)

106 46.134 46.485 46.888

(45.637) (45.842) (46.134)

5× 106 87.416 87.72 88.061

(86.764) (86.892) (87.078)

107 115.229 115.518 115.837

(114.459) (114.562) (114.714)

beginning (up to N ∼ 2000); thereafter it varies slowly.
The result shows good quantitative agreement with those
in the references [8,9]. For example for N = 2000 the crit-
ical angular velocity is 52% of the noninteracting value
given by the transverse angular frequency ω0

⊥ of the trap,
in comparison with 49.33% in reference [8]. For N > 5000
it is less than 43% of the noninteracting value, which com-
pares well with the figure of 40% in reference [9]. The crit-
ical angular velocity increases with κ. For N = 10 000 we
find Ωc/2π equal to 30.57, 38.5, and 45.42 Hz for κ = 1,
2, and 3 respectively. These figures are 26, 35, and 41 Hz
respectively in reference [9].

3.2 Negative scattering length: 7Li

In this section we report calculations on 7Li. These atoms
interact via an attractive interaction and consequently
the scattering length in this case is a negative quantity.
Numerical values of the parameters used in the calcu-
lations correspond to the experimental situation of ref-
erence [2] and the subsequent theoretical calculations
[9,10]. Accordingly, the asymmetry parameter of the trap
is λ0 = ω0

z/ω
0
⊥ = 0.72. The axial frequency ω0

z/2π is
taken to be 117 Hz. The s-wave scattering length a is
−27a0. The corresponding characteristic length is a⊥ =
2.972× 10−4 cm and the ratio a/a⊥ is −4.33× 10−4.

We find the value of the critical number Nc =
1270 beyond which the ground state collapses because
of the attractive interaction. This is in good agreement
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Table 3. Results for the ground state of 7Li atoms confined in an anisotropic harmonic trap with λ0 = 0.72 and ω0
⊥/2π = 163 Hz.

Chemical potential and energy are in units of ~ω0
⊥ and length is in units a⊥. Numbers in the brackets correspond to the results

of reference [9].

N µ1 (E1/N) (E1/N)kin (E1/N)HO (E1/N)pot

p
〈x2

1〉
p
〈z2

1〉
1 1.36 1.36 0.68 0.68 0 0.707 0.833

(1.36)

100 1.327 1.344 0.693 0.670 −0.017 0.701 0.824

200 1.291 1.326 0.707 0.654 −0.035 0.695 0.813

300 1.254 1.309 0.722 0.641 −0.054 0.688 0.803

400 1.214 1.29 0.74 0.626 −0.076 0.681 0.791

500 1.173 1.271 0.758 0.611 −0.098 0.672 0.786

600 1.125 1.25 0.782 0.594 −0.125 0.665 0.765

700 1.074 1.229 0.808 0.576 −0.155 0.656 0.75

800 1.017 1.206 0.839 0.556 −0.189 0.645 0.734

900 0.952 1.182 0.878 0.533 −0.23 0.633 0.715

1000 0.874 1.155 0.928 0.507 −0.28 0.619 0.693

(1.15) (0.62) (0.69)

1100 0.776 1.125 0.999 0.475 −0.349 0.60 0.665

1200 0.625 1.09 1.121 0.43 −0.461 0.573 0.625

1270 0.346 1.06 1.42 0.352 −0.713 0.521 0.554

Fig. 5. Ground state wave function for 7Li along the x axis
for N = 500 (lower curves) and N = 1270 (upper curves). The
solid lines are the results of our variational calculation. The
dotted line are the results obtained by using the Gaussian trial
wave function of reference [11].

with the figure of Nc ∼ 1300 in reference [10] and the ex-
perimental observation (see the second paper of Ref. [2])
that N ≤ 1300. Wave functions for N = 500 and 1270 are
shown in Figure 5. For N = 500 there is hardly any differ-
ence between the proposed wave function and the Gaus-
sian trial wave function. However, the difference is rather
significant for N = 1270 as is evident from the figure. We
plot the aspect ratio for various values of N ≤ Nc in Fig-
ure 6. At N ∼ Nc the aspect ratio tends to 1. Since for a
wave function of the form given by equation (5) the aspect
ratio also gives the ratio of the spatial widths in the trans-
verse and the axial directions, the condensate tends to be

Fig. 6. Aspect ratio in 7Li as a function of N .

isotropic for N ∼ Nc. This becomes further evident in
Table 3 where we have listed the results for various quan-
tities of interest. As reported in reference [9] the varia-
tion in the various quantities is smooth from N = 1 to
1000. However, we can also note the sharp variation as
we reach the critical number. This behaviour is consistent
with that reported in reference [10]. We have also calcu-
lated the peak density and loss rate for N ≤ Nc. Once
again we find a sharp increase near N ∼ Nc. These results
also match well with those of reference [10].

It is possible to have a very large number of particles
(N � 1300) in the vortex states even when the inter-
atomic interaction is attractive. We have considered the
vortex states with κ = 1, 2 and 3. The particle num-
ber is 3500, 6000 and 8000 respectively. Peak densities for
these states are 1.266×1013, 2.239×1013 and 2.744×1013

which occur at r1⊥ = 0.922, 1.257 and 1.571 respectively.
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Although the particle number is quite different in the three
cases, the peak densities are not very different. Also they
remain less than the peak density 3.984× 1013 which cor-
responds to κ = 0 and N = 1270. These observations
are consistent with those in reference [9]. Stability of the
vortex states for attractive interaction can be physically
explained as the interplay between the restoring force and
and the centrifugal force. The restoring force tries to at-
tract the particles to the centre while the centrifugal force
tries to push them out. The net effect is that the peak den-
sity does not change much even when there is significant
variation in the particle number. Since the interparticle in-
teraction depends on the density, for low densities it does
not cause the collapse of the condensate.

In the case of attractive interaction it takes more en-
ergy to create a vortex state than that required in the
noninteracting case. Consequently the critical angular ve-
locity is greater than unity. For κ = 1 and N = 1000 we
find Ωc = 1.119 which compares very well with Ωc = 1.2
reported in reference [9].

4 Conclusion

We have proposed a variational scheme to describe
the ground state and vortex states of weakly interacting
atomic gases confined by harmonic traps within the frame-
work of the meanfield theory of Gross and Pitaevskii.
It is based on a judicious choice of the form of trial
wave function for the ground state which has a simple
functional form and at the same time is valid for a wide
range of the particle numbers. When the number is small
it tends towards a Gaussian and in the opposite limit it
resembles the Thomas-Fermi wave function. However, for
large N it provides a better description of the surface
region than the Thomas-Fermi wave function. In the
intermediate regime it combines the feature of both in
an effective way. In the central region of the trap, where
density is high, it matches with the Thomas-Fermi wave
function. Away from the centre of the trap, where density
is low, it matches the Gaussian trial wave function.
We easily generalize the wave function for the vortex
states. We have demonstrated the applicability of our
method by performing calculations of various physical
quantities for the experimental situations of references
[1,2]. We find our results to be in good agreement with
the existing results. The method is semi-analytic and
consequently computationally easy to implement. As
our method poses no additional problems even for very
large particle numbers we have been able to verify, for
the first time, the predicted behaviour of the aspect
ratio. The formalism is quite general involving only
the scaled s-wave scattering length and the asymmetry
parameter of the trap. We therefore believe that it
will be useful in analysing a variety of experiments. In
addition it may serve as a very good starting point for
the theories [24] where quantum fluctuations play an

important role. Generalization of our method to the time
dependent case [12] is straightforward and it will be re-
ported in a future publication.

We thank Dr. S.C. Mehendale and Dr. M.K. Harbola for help-
ful discussions and critical reading of the manuscript.
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